3,513 research outputs found

    Market-based Risk Allocation for Multi-agent Systems

    Get PDF
    This paper proposes Market-based Iterative Risk Allocation (MIRA), a new market-based distributed planning algorithm for multi-agent systems under uncertainty. In large coordination problems, from power grid management to multi-vehicle missions, multiple agents act collectively in order to optimize the performance of the system, while satisfying mission constraints. These optimal plans are particularly susceptible to risk when uncertainty is introduced. We present a distributed planning algorithm that minimizes the system cost while ensuring that the probability of violating mission constraints is below a user-specified level. We build upon the paradigm of risk allocation (Ono & Williams 2008), in which the planner optimizes not only the sequence of actions, but also its allocation of risk among each constraint at each time step. We extend the concept of risk allocation to multi-agent systems by highlighting risk as a commodity that is traded in a computational market. The equilibrium price of risk that balances the supply and demand is found by an iterative price adjustment process called tˆatonnement (also known as Walrasian auction). Our work is distinct from the classical tˆatonnement approach in that we use Brent’s method to provide fast guaranteed convergence to the equilibrium price. The simulation results demonstrate the efficiency of the proposed distributed planner

    Motion learning in variable environments using probabilistic flow tubes

    Get PDF
    Commanding an autonomous system through complex motions at a low level can be tedious or impractical for systems with many degrees of freedom. Allowing an operator to demonstrate the desired motions directly can often enable more intuitive and efficient interaction. Two challenges in the field of learning from demonstration include (1) how to best represent learned motions to accurately reflect a human's intentions, and (2) how to enable learned motions to be easily applicable in new situations. This paper introduces a novel representation of continuous actions called probabilistic flow tubes that can provide flexibility during execution while robustly encoding a human's intended motions. Our approach also automatically determines certain qualitative characteristics of a motion so that these characteristics can be preserved when autonomously executing the motion in a new situation. We demonstrate the effectiveness of our motion learning approach both in a simulated two-dimensional environment and on the All Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robot performing object manipulation tasks.United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship 32 CFR 168a)United States. National Aeronautics and Space Administration (JPL Strategic University Research Partnership

    Chance-constrained Scheduling via Conflict-directed Risk Allocation

    Get PDF
    Temporal uncertainty in large-scale logistics forces one to trade off between lost efficiency through built-in slack and costly replanning when deadlines are missed. Due to the difficulty of reasoning about such likelihoods and consequences, a computational framework is needed to quantify and bound the risk of violating scheduling requirements. This work addresses the chance-constrained scheduling problem, where actions’ durations are modeled probabilistically. Our solution method uses conflict-directed risk allocation to efficiently compute a scheduling policy. The key insight, compared to previous work in probabilistic scheduling, is to decouple the reasoning about temporal and risk constraints. This decomposes the problem into a separate master and subproblem, which can be iteratively solved much quicker. Through a set of simulated car-sharing scenarios, it is empirically shown that conflict-directed risk allocation computes solutions nearly an order of magnitude faster than prior art does, which considers all constraints in a single lump-sum optimization

    Resolving Over-constrained Probabilistic Temporal Problems through Chance Constraint Relaxation

    Get PDF
    When scheduling tasks for field-deployable systems, our solutions must be robust to the uncertainty inherent in the real world. Although human intuition is trusted to balance reward and risk, humans perform poorly in risk assessment at the scale and complexity of real world problems. In this paper, we present a decision aid system that helps human operators diagnose the source of risk and manage uncertainty in temporal problems. The core of the system is a conflict-directed relaxation algorithm, called Conflict-Directed Chance-constraint Relaxation (CDCR), which specializes in resolving over-constrained temporal problems with probabilistic durations and a chance constraint bounding the risk of failure. Given a temporal problem with uncertain duration, CDCR proposes execution strategies that operate at acceptable risk levels and pinpoints the source of risk. If no such strategy can be found that meets the chance constraint, it can help humans to repair the over-constrained problem by trading off between desirability of solution and acceptable risk levels. The decision aid has been incorporated in a mission advisory system for assisting oceanographers to schedule activities in deep-sea expeditions, and demonstrated its effectiveness in scenarios with realistic uncertaintyBoeing Company (Grant MIT-BA-GTA-1

    Chance-Constrained Probabilistic Simple Temporal Problems

    Get PDF
    Scheduling under uncertainty is essential to many autonomous systems and logistics tasks. Probabilistic methods for solving temporal problems exist which quantify and attempt to minimize the probability of schedule failure. These methods are overly conservative, resulting in a loss in schedule utility. Chance constrained formalism address over-conservatism by imposing bounds on risk, while maximizing utility subject to these risk bounds. In this paper we present the probabilistic Simple Temporal Network (pSTN), a probabilistic formalism for representing temporal problems with bounded risk and a utility over event timing. We introduce a constrained optimisation algorithm for pSTNs that achieves compactness and efficiency through a problem encoding in terms of a parameterised STNU and its reformulation as a parameterised STN. We demonstrate through a car sharing application that our chance-constrained approach runs in the same time as the previous probabilistic approach, yields solutions with utility improvements of at least 5% over previous arts, while guaranteeing operation within the specified risk bound.National Science Foundation (U.S.) (Grant No. IIS-1017992

    RAO*: an Algorithm for Chance-Constrained POMDP’s

    Get PDF
    Autonomous agents operating in partially observable stochastic environments often face the problem of optimizing expected performance while bounding the risk of violating safety constraints. Such problems can be modeled as chance-constrained POMDP’s (CC-POMDP’s). Our first contribution is a systematic derivation of execution risk in POMDP domains, which improves upon how chance constraints are handled in the constrained POMDP literature. Second, we present RAO*, a heuristic forward search algorithm producing optimal, deterministic, finite-horizon policies for CC-POMDP’s. In addition to the utility heuristic, RAO* leverages an admissible execution risk heuristic to quickly detect and prune overly-risky policy branches. Third, we demonstrate the usefulness of RAO* in two challenging domains of practical interest: power supply restoration and autonomous science agentsUnited States. Air Force Office of Scientific Research (Grant FA95501210348)United States. Air Force Office of Scientific Research (Grant FA2386-15-1-4015)SUTD-MIT Graduate Fellows ProgramNICT

    Chance-Constrained Optimal Path Planning With Obstacles

    Get PDF
    Autonomous vehicles need to plan trajectories to a specified goal that avoid obstacles. For robust execution, we must take into account uncertainty, which arises due to uncertain localization, modeling errors, and disturbances. Prior work handled the case of set-bounded uncertainty. We present here a chance-constrained approach, which uses instead a probabilistic representation of uncertainty. The new approach plans the future probabilistic distribution of the vehicle state so that the probability of failure is below a specified threshold. Failure occurs when the vehicle collides with an obstacle or leaves an operator-specified region. The key idea behind the approach is to use bounds on the probability of collision to show that, for linear-Gaussian systems, we can approximate the nonconvex chance-constrained optimization problem as a disjunctive convex program. This can be solved to global optimality using branch-and-bound techniques. In order to improve computation time, we introduce a customized solution method that returns almost-optimal solutions along with a hard bound on the level of suboptimality. We present an empirical validation with an aircraft obstacle avoidance example.National Science Foundation (U.S.) (Grant IIS-1017992)Boeing Company (Grant MIT-BA-GTA-1

    Invention from first principles via topologies of interaction

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1989.Includes bibliographical references (leaves 293-297).by Brian Charles Williams.Ph.D

    Flexible Execution of Plans with Choice

    Get PDF
    Dynamic plan execution strategies allow an autonomous agent to respond to uncertainties while improving robustness and reducing the need for an overly conservative plan. Executives have improved this robustness by expanding the types of choices made dynamically, such as selecting alternate methods. However, in methods to date, these additional choices introduce substantial run-time latency. This paper presents a novel system called Drake that makes steps towards executing an expanded set of choices dynamically without significant latency. Drake frames a plan as a Disjunctive Temporal Problem and executes it with a fast dynamic scheduling algorithm. Prior work demonstrated an efficient technique for dynamic execution of one special type of DTPs by using an off-line compilation step to find the possible consistent choices and compactly record the differences between them. Drake extends this work to handle a more general set of choices by recording the minimal differences between the solutions which are required at run-time. On randomly generated structured plans with choice, we show a reduction in the size of the solution set of over two orders of magnitude, compared to prior art
    • …
    corecore